Autism stem cell therapy Autism stem cell therapy

pubmed: autism and stem cell...
NCBI: db=pubmed; Term=autism and stem cell therapy
NCBI pubmed
  • Human Embryonic Stem Cells in the Treatment of Autism: A Case Series.

    Human Embryonic Stem Cells in the Treatment of Autism: A Case Series.

    Innov Clin Neurosci. 2017 Mar-Apr;14(3-4):12-16

    Authors: Shroff G

    Abstract
    Background: Autism spectrum disorder is a neurodevelopmental disorder accompanied by weak immune system and neuroinflammation. Multiple factors contribute to etiology of autism spectrum disorder including genetic disorders, environmental substances/toxins, imbalanced immune system, encephalitis, and viral infections. Autism spectrum disorder is an incurable disease; however, it can be managed by educational and medical interventions. Human embryonic stem cell therapy has been shown to improve blood perfusion in the brain; thus, this therapy may be effective in improving motor skills, social skills, and cognition in patients with autism spectrum disorder. Method: Three pediatric patients with autism spectrum disorder were administered human embryonic stem cell therapy. Their treatment plan comprised 3 to 4 therapy sessions (T1, T2, T3, T4) that were 4 to 6 weeks in length, with 4- to 8-month gap phases separating each therapy session. Results: The patients showed improvements in eye coordination, writing, balancing, cognition, and speech and showed reduced hypersensitivity to noises and smells. Conclusion: The use of human embryonic stem cell therapy may be a safe and effective treatment for patients with autism spectrum disorder. Studies with larger sample sizes are needed to support the use of human embryonic stem cell therapy in this patient population.

    PMID: 28584692 [PubMed - in process]

pubmed: autism and stem cell...
NCBI: db=pubmed; Term=autism and stem cell treatment
NCBI pubmed
  • Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities.
    Related Articles

    Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities.

    Neurosci Lett. 2017 Jun 05;:

    Authors: Zuiki M, Chiyonobu T, Yoshida M, Maeda H, Yamashita S, Kidowaki S, Hasegawa T, Gotoh H, Nomura T, Ono K, Hosoi H, Morimoto M

    Abstract
    Maternal infection during pregnancy increases the risk of neurodevelopmental conditions such as autism spectrum disorders and schizophrenia in offspring. Several previous animal studies have indicated that maternal immune activation (MIA), rather than a specific pathogen, alters fetal brain development. Among them, prenatal exposure to interleukin-6 (IL-6) has been associated with behavioral and neuropathological abnormalities, though such findings remain to be elucidated in humans. We developed a human cell-based model of MIA by exposing human induced pluripotent stem cells (hiPSCs)-derived neural aggregates to IL-6 and investigated whether luteolin-a naturally occurring flavonoid found in edible plants-could prevent MIA-induced abnormalities. We generated neural aggregates from hiPSCs using the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) method, following which aggregates were cultured in suspension. We then exposed the aggregates to IL-6 (100ng/ml) for 24hours at day 51. Transient IL-6 exposure significantly increased the area ratio of astrocytes (GFAP-positive area ratio) and decreased the area ratio of early-born neurons (TBR1-positive or CTIP2-positive area ratio) relative to controls. In addition, western blot analysis revealed that levels of phosphorylated STAT3 were significantly elevated in IL-6-exposed neural aggregates. Luteolin treatment inhibited STAT3 phosphorylation and counteracted IL-6-mediated increases of GFAP-positive cells and reductions of TBR1-positive and CTIP2-positive cells. Our observations suggest that the flavonoid luteolin may attenuate or prevent MIA-induced neural abnormalities. As we observed increased apoptosis at high concentrations of luteolin, further studies are required to determine the optimal intake dosage and duration for pregnant women.

    PMID: 28595950 [PubMed - as supplied by publisher]