pubmed: meniscus and stem ce...
NCBI: db=pubmed; Term=meniscus and stem cell treatment
NCBI pubmed
  • Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.
    Related Articles

    Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    Am J Vet Res. 2016 Jul;77(7):779-788

    Authors: González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA, Prieto-Fernández JG, López-González ME, Lobato-Pérez S, Colaço BJ, Olivera ER, Villar-Suárez V

    Abstract
    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans.

    PMID: 27347833 [PubMed - as supplied by publisher]

  • Osteoarthritis prevention and meniscus regeneration induced by transplantation of mesenchymal stem cell sheet in a rat meniscal defect model.
    Related Articles

    Osteoarthritis prevention and meniscus regeneration induced by transplantation of mesenchymal stem cell sheet in a rat meniscal defect model.

    Exp Ther Med. 2016 Jul;12(1):95-100

    Authors: Qi Y, Chen G, Feng G

    Abstract
    Transplantation of mesenchymal stem cells (MSCs) is a potential therapy for meniscus regeneration. However, when using single cell suspension injection, there is frequently a significant loss of cells, with only a small percentage of cells remaining at the target site. This issue may be solved with the use of MSC sheets. In the present study, we investigated whether the use of MSC sheets were able to regenerate the meniscus effectively in a rat meniscectomized model. The anterior half of the medial meniscus in 10 rats was excised and an MSC sheet was transplanted in the MSC sheet treatment group, while untreated rats served as the control. After 4 and 8 weeks, the knee joints were examined by gross and histological observation. Histological observation revealed that the anterior portion of meniscus was similar to the native tissue, showing typical fibrochondrocytes surrounded by richer extracellular matrix in the MSC sheet group. In addition, predominant collagen-rich matrix bridging the interface was observed and the neo-meniscus integrated well with its host meniscus. Furthermore, degenerative changes of tibial plateau and femoral condyle occurred in the two groups. MSC sheet transplantation alleviated the degenerative changes efficiently. In conclusion, transplantation of MSC sheets may efficiently promote meniscus regeneration, as well as inhibit the progression of osteoarthritis in knee joints.

    PMID: 27347022 [PubMed - as supplied by publisher]

pubmed: meniscus and stem ce...
NCBI: db=pubmed; Term=meniscus and stem cell treatment
NCBI pubmed
  • Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.
    Related Articles

    Assessment of regeneration in meniscal lesions by use of mesenchymal stem cells derived from equine bone marrow and adipose tissue.

    Am J Vet Res. 2016 Jul;77(7):779-788

    Authors: González-Fernández ML, Pérez-Castrillo S, Sánchez-Lázaro JA, Prieto-Fernández JG, López-González ME, Lobato-Pérez S, Colaço BJ, Olivera ER, Villar-Suárez V

    Abstract
    OBJECTIVE To assess the ability to regenerate an equine meniscus by use of a collagen repair patch (scaffold) seeded with mesenchymal stem cells (MSCs) derived from bone marrow (BM) or adipose tissue (AT). SAMPLE 6 female Hispano-Breton horses between 4 and 7 years of age; MSCs from BM and AT were obtained for the in vitro experiment, and the horses were subsequently used for the in vivo experiment. PROCEDURES Similarities and differences between MSCs derived from BM or AT were investigated in vitro by use of cell culture. In vivo assessment involved use of a meniscus defect and implantation on a scaffold. Horses were allocated into 2 groups. In one group, defects in the medial meniscus were treated with MSCs derived from BM, whereas in the other group, defects were treated with MSCs derived from AT. Defects were created in the contralateral stifle joint but were not treated (control samples). RESULTS Both types of MSCs had universal stem cell characteristics. For in vivo testing, at 12 months after treatment, treated defects were regenerated with fibrocartilaginous tissue, whereas untreated defects were partially repaired or not repaired. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSCs derived from AT could be a good alternative to MSCs derived from BM for use in regenerative treatments. Results also were promising for a stem cell-based implant for use in regeneration in meniscal lesions. IMPACT FOR HUMAN MEDICINE Because of similarities in joint disease between horses and humans, these results could have applications in humans.

    PMID: 27347833 [PubMed - as supplied by publisher]

  • Osteoarthritis prevention and meniscus regeneration induced by transplantation of mesenchymal stem cell sheet in a rat meniscal defect model.
    Related Articles

    Osteoarthritis prevention and meniscus regeneration induced by transplantation of mesenchymal stem cell sheet in a rat meniscal defect model.

    Exp Ther Med. 2016 Jul;12(1):95-100

    Authors: Qi Y, Chen G, Feng G

    Abstract
    Transplantation of mesenchymal stem cells (MSCs) is a potential therapy for meniscus regeneration. However, when using single cell suspension injection, there is frequently a significant loss of cells, with only a small percentage of cells remaining at the target site. This issue may be solved with the use of MSC sheets. In the present study, we investigated whether the use of MSC sheets were able to regenerate the meniscus effectively in a rat meniscectomized model. The anterior half of the medial meniscus in 10 rats was excised and an MSC sheet was transplanted in the MSC sheet treatment group, while untreated rats served as the control. After 4 and 8 weeks, the knee joints were examined by gross and histological observation. Histological observation revealed that the anterior portion of meniscus was similar to the native tissue, showing typical fibrochondrocytes surrounded by richer extracellular matrix in the MSC sheet group. In addition, predominant collagen-rich matrix bridging the interface was observed and the neo-meniscus integrated well with its host meniscus. Furthermore, degenerative changes of tibial plateau and femoral condyle occurred in the two groups. MSC sheet transplantation alleviated the degenerative changes efficiently. In conclusion, transplantation of MSC sheets may efficiently promote meniscus regeneration, as well as inhibit the progression of osteoarthritis in knee joints.

    PMID: 27347022 [PubMed - as supplied by publisher]